

TIME

$$
\begin{aligned}
1 \text { year } & =365 \text { days } \\
1 \text { year } & =12 \text { months } \\
1 \text { year } & =52 \text { weeks } \\
1 \text { week } & =7 \text { days } \\
1 \text { day } & =24 \text { hours } \\
1 \text { hour } & =60 \text { minutes } \\
1 \text { minute } & =60 \text { seconds }
\end{aligned}
$$

Exit Level Mathematics Chart

Perimeter	rectangle	$P=2 l+2 w \quad$ or $\quad P=2(l+w)$
Circumference	circle	$C=2 \pi r \quad$ or $\quad C=\pi d$
Area	rectangle	$A=l w \quad$ or $A=b h$
	triangle	$A=\frac{1}{2} b h \quad$ or $\quad A=\frac{b h}{2}$
	trapezoid	$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h \quad$ or $\quad A=\frac{\left(b_{1}+b_{2}\right) h}{2}$
	regular polygon	$A=\frac{1}{2} a P$
	circle	$A=\pi r^{2}$
\boldsymbol{P} represents the Perimeter of the Base of a three-dimensional figure.		
\boldsymbol{B} represents the Area of the Base of a three-dimensional figure.		
Surface Area	cube (total)	$S=6 s^{2}$
	prism (lateral)	$S=P h$
	prism (total)	$S=P h+2 B$
	pyramid (lateral)	$S=\frac{1}{2} P l$
	pyramid (total)	$S=\frac{1}{2} P l+B$
	cylinder (lateral)	$S=2 \pi r h$
	cylinder (total)	$S=2 \pi r h+2 \pi r^{2}$ or $S=2 \pi r(h+r)$
	cone (lateral)	$S=\pi r l$
	cone (total)	$S=\pi r l+\pi r^{2} \quad$ or $\quad S=\pi r(l+r)$
	sphere	$S=4 \pi r^{2}$
Volume	prism or cylinder	$V=B h$
	pyramid or cone	$V=\frac{1}{3} B h$
	sphere	$V=\frac{4}{3} \pi r^{3}$
Special Right Tr	$\begin{aligned} & 30^{\circ}, 60^{\circ}, 90^{\circ} \\ & 45^{\circ}, 45^{\circ}, 90^{\circ} \end{aligned}$	$\begin{aligned} & x, x \sqrt{3}, \quad 2 x \\ & x, x, x \sqrt{2} \end{aligned}$
Pythagorean Theorem		$a^{2}+b^{2}=c^{2}$
Distance Formula		$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Slope of a Line		$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Midpoint Formula		$M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Quadratic Formula		$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Slope-Intercept Form of an Equation		$y=m x+b$
Point-Slope Form of an Equation		$y-y_{1}=m\left(x-x_{1}\right)$
Standard Form of an Equation		$A x+B y=C$
Simple Interest Formula		$I=p r t$

